Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

نویسندگان

  • Amarendra Kumar
  • Kunal Kashyap
  • Max T. Hou
  • J. Andrew Yeh
چکیده

In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.

The sub-wavelength structures in moth eyes exhibit fascinating antireflective properties over the broadband wavelength region and at large incident angle by generating an air-mixed heterogeneous optical interface. In this work, antireflective behavior of transparent glass is observed with the elaborate controls of the nanopillar morphology. The reflectance spectrum shows a red shift and a notab...

متن کامل

Strength Improvement of Glass Substrates by Using Surface Nanostructures

Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending...

متن کامل

Mechanical Characterization of Glass-Basalt-Carbon/Polyester Hybrid Composites

Influence of the stacking sequences of hybrid composites on the tensile strength, flexural strength, inter-laminar shear strength (ILSS) and impact energy was investigated. The hybrid glass-basalt-carbon/polyester composite laminates were processed by hand lay-up procedure at room temperature. The fracture surface of the composite laminates after the tension and flexural test was examined by sc...

متن کامل

Mechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers

Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...

متن کامل

Effect of surface-functionalization of Na+-montmorillonite nanoclay using 3-aminopropyltrimethoxy silane on the mechanical properties of E-glass chopped strand mat/epoxy composites

In the present work, Na+-montmorillonite nanoclay (Na-MMT) was functionalized using 3-aminopropyltrimethoxysilane (3-APTMS) as a coupling agent. The covalent functionalization of MMT was confirmed by Fourier-transform infrared spectroscopy (FT-IR). In the specimen fabrication stage, 5 wt% of pristine MMT or silane-functionalized MMT (f-MMT) were incorporated into an epoxy system and the resulta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016